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Abstract--A quantitative mathematical model using elastic dislocation theory has been developed to model the 
near-field subsurface displacement field associated with faults and fault arrays within an elastic layer above an 
elastic half-space. The three components of displacement in the spatial domain are expressed as a sum of Fourier- 
Bessel integrals in the wave number domain. A numerical technique using matrix decomposition has been used to 
obtain near-field stable solutions. Fault displacements may be dip-slip, strike-slip and oblique-slip. The model 
has been used to determine the three-dimensional surface and subsurface displacement fields for a rectangular 
fault with constant slip, and for an elliptical fault on which the slip varies from the point of maximum 
displacement at the centre to zero displacement at an elliptical tip-line. The three-dimensional displacement field 
may be determined for individual slip events on a fault, or for cumulative fault displacements. The model has also 
been applied to multiple fault arrays. 

INTRODUCTION 

THE static coseismic increment of deformation associ- 
ated with earthquake faults has been studied extensively 
using elastic dislocation theory. Many methods based on 
the elastic dislocation theory are available to calculate 
surface displacements for a homogeneous half-space 
(Chinnery 1961, Maruyama 1964, Press 1965, Mansinha 
& Smylie 1971, Okada 1985) and for a layered half-space 
(Ben-Menahem & Gillon 1970, Sato 1971, Jovanovich et 
al. 1974a, Rundle 1982). The main aims of previous 
studies have been to interpret geodetic observations and 
to derive earthquake source parameters such as rupture 
zone size, depth of hypocentre, seismic moment and 
stress drop (Savage & Hastie 1966, Mikumo 1973). 

The elastic dislocation theory has also been used to 
compute subsurface displacement for an infinite half 
space (Masinha & Smylie 1971, Iwasaki & Sato 1979, 
Okada 1992). Roth (1990) derived kernel functions for 
subsurface displacements above a point source within a 
layered elastic medium. Recently Ma & Kusznir (1992) 
extended Roth's theory further to compute the displace- 
ment field at any point below a fault in the upper elastic 
layer. This new mathematical formation permits three- 
dimensional displacements to be determined at the free 
surface, or in the subsurface either above or below the 
source. 

In studying the deformation generated by a finite size 
fault using elastic dislocation theory, most workers have 
assumed that the fault surface is a rectangular plane with 
constant slip. Real faults do not however possess a 
rectangular geometry, neither do they have constant 
displacements. The new elastic dislocation model of 
three-dimensional subsurface displacement developed 
by Ma & Kusznir has been applied to a more realistic 
fault geometry and fault plane displacement field distri- 
bution (Ma & Kusznir 1992). 

The objective of the work described in this paper is to 
show the three-dimensional subsurface displacement 
field distribution for generalized faults: dip-slip; strike- 
slip; and oblique-slip. Two different fault geometry and 
displacement distributions are considered: a rectangular 
fault with constant slip; and an elliptical fault with 
displacement distribution in which the slip varies from a 
point of maximum displacement at the centre to zero 
displacement at an elliptical tip-line, as suggested by the 
fault growth model proposed by Walsh & Watterson 
(1987). The calculated displacements for a rectangular 
fault and for an elliptical fault are compared. 

As well as being applied to the cumulative fault 
displacement field, the new model has been used to 
determine the incremental displacement field associated 
with a single fault slip event, corresponding to a single 
seismic cycle. The mathematical model has also been 
used to determine subsurface displacement fields for 
multiple fault arrays. The subsurface displacements are 
calculated not only for horizontal horizons but also for 
vertical sections. Three-dimensional subsurface strains 
as well as displacements have been determined. 

THEORY 

A dislocation is a surface of discontinuity in displace- 
ment. If a cut is made inside an elastic body and a 
relative slip displacement is applied to the two surfaces 
of the cut, the elastic body will regain its stress equilib- 
rium but will undergo spontaneous internal strains due 
to the discontinuous displacement across the surfaces of 
the cut. The strain pattern in the medium depends on the 
configuration of the cut and displacement distribution 
applied. Steketee (1958a,b) used the theorem of force- 
dislocation equivalence to study the strained elastic 
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system. He arrived at the statement that the displace- 
ment field due to a shear dislocation may be mathemat- 
ically expressed by a surface integral of point-source 
elements of the double couple type over the entire fault 
surface. He then developed a Green's function method 
to calculate the stresses and displacements produced by 
a strike-slip fault. Maruyama (1964) derived the remain- 
ing five sets of Green's functions which allow the dis- 
placement field, due to an arbitrary displacement 
dislocation in a semi-infinite medium, to be determined. 
The practical applications of the dislocation theory to 
rectangular earthquake faults in an elastic half-space 
were addressed by Chinnery (1961), Savage & Hastie 
(1966) and Mansinha & Smylie (1971). Ben-Menahem 
& Singh (1968) extended the results of Steketee 
(1958a,b) and Maruyama (1964) to a layered half-space. 
Singh (1970) applied the Thomson-Haskell propagator 
matrix technique to solve the problem of the static 
deformation of a multi-layered elastic half-space. Each 
layer of the multi-layered medium is assumed to be 
homogeneous and isotropic, and interfaces are assumed 
to be in welded contact. The point source is represented 
as a discontinuity in the depth dependent coefficients of 
the displacement and stress integrands at the source 
level. 

In the following work the modelling of displacements 
due to earthquake faulting using elastic dislocation 
theory will be restricted to the static problem only. 
Waves and transient dynamic features associated with 
the earthquake will be neglected. It is also assumed that 
the effects of the earth's curvature, its gravity and 
temperature on the displacement field are negligible. 
The elastic continuum will also be assumed to be iso- 
tropic so that the laws of classical linear elasticity apply. 

The vector displacement u satisfies the Navier 
equation of static elasticity for an uniform, infinite 
space: 

[V 2 + (1 + 2/#) grad div] u = 0, (1) 

where 2 and/~ are Lamr's constants. The three indepen- 
dent vector solutions of (1) are listed in equation (2) of 
Singh (1970). The general solution of equation (1) is 
expressed in the spatial domain as a sum of integrals in 
the wave number domain: 

f 
oe 

= y Um(k)k dk, ( 2 )  u 
g.........d 0 m 

where U,n is a linear combination of the three indepen- 
dent vector solutions (also see equation 6 in Singh 1970). 

To incorporate layering effects, one has to apply: (i) 
the conditions of zero normal traction for the free 
surface; (ii) those of zero displacement, stress and po- 
tential at infinite depth; and (iii) displacement and stress 
continuity across layer boundaries. A source is incorpor- 
ated by creating a layer boundary at the source depth 
and prescribing appropriate discontinuity conditions 
across the boundary for the source. By using the 
Thomson-Haskell matrix propagator technique, the dis- 
placement field expressions can be transformed to 

Fourier-Bessel integrals. The case for a vertical dip-slip 
point source is given below. The three-components of 
displacement are: 

Uv ~ __foo 
0 

[ (1/i)Yll(Zk)( O/Okr)Jl ( kr) 

+ z11(zg)(1/kr)J1(kr)]k dk  sin q9 

f 
ot~ 

u~ = - [(1/i)Y11(Zk)(1/kr)J1(kr) 
0 

+ z11(Zk)(O/Okr)Jl(kr)]k dk  cos q~ 

Uz = - [(ll i)Xll(Zk)Jl(kr)]k dk  sin rp, 
0 

(3) 

where Xn, Y]I and Zn are kernel functions dependent on 
source dimension, depth and dislocation; J1 is a Bessel 
function; Zk is depth of an observation level in the 
subsurface. The kernel functions of surface displace- 
ments are given in equation (41) of Singh (1970) and 
those of subsurface displacements have been derived by 
Ma & Kusznir (1992). 

The evaluation of kernel functions has been carried 
out by decomposing matrices contained in the kernels 
into analytical forms, i.e. a sum of exponential- 
polynomials using the technique proposed by Ben- 
Menahen & Gillon (1970). The original displacement 
integrals in (3) can then be transformed to the well- 
known Lipshitz-Hankel integrals whose quadrature is 
analytical (Erdelyi 1954): 

foo u(r) = St  ~n aln 0 k n e(-kD,)Jm(kr ) dk ( 4 )  

(where at,, are constant coefficients, and D t are exponen- 
tial arguments which are a function of layer thickness, 
source depth and depth of an observation point). The 
calculation of displacements using the method described 
above is fast, stable and has acceptable accuracy. 

The three-dimensional displacement field for a fault 
of any geometry and fault surface displacement disconti- 
nuity may be determined by convolving the point source 
displacement field response with the fault surface dis- 
placement distribution. 

In this paper, we deal with a model consisting of one 
elastic layer overlying an elastic half-space. Lamr's 
constants for the top elastic layer are:/~1 = 7.0 × 101° 
N m -2, )~1 = 8.22 x 1010 N m -2, and those for the 
infinite half space are: fiE = 1.55 x 1011 N m -2, 22 = 1.82 
x 1011 N m -2. The results can be extended to a multi- 
layer model by introducing extra layer matrices. We use 
the newly derived mathematical formulation to deter- 
mine displacements for generalized faults and fault 
arrays. 

The following convention is adopted for the single 
fault displacement calculation: the fault dips down 
towards the positive Y direction; the strike of the fault is 
taken along the X axis; the length of the fault is defined 
as the dimension in the strike direction while the width is 
defined as the dimension normal to strike. 
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Fig. 1. (a) Co-ordinate system and geometry of a rectangular dip-slip fault of length 2L = 40 km and width W = 20 kin. The 
fault dips at 60 ° towards the positive Y direction and intersects the free surface (D = 0). The slip is constant (U0 = 1 kin). 
The thickness of the top elastic layer is 35 km. The elastic properties of the medium are described in the text. (b) Vertical 
surface displacement (Uz) contour map. (c) Horizontal surface displacement (U x ). (d) Horizontal displacement (Uy). Note 
that the displacement values are in metres while the labelled numbers on axes are in kin. This notation is applied to all 

figures in this paper. 
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R E C T A N G U L A R  D I P - S L I P  F A U L T  W I T H  
CONSTANT SLIP 

The surface displacement field for a rectangular 
planar fault with constant slip is shown in Fig. 1. The 60 ° 
dip-slip fault cuts through the upper  part  of the top layer 
and intercepts the free surface. The arrows on the 
diagrams indicate the directions of material  movement .  
The material  on the downthrow side in Fig. l(c)  moves  
inwards while on the upthrow side they move outwards. 
One of the conspicuous features in Fig. l (b)  is the 
asymmetry  of the displacement contour  pat tern,  i.e. the 
uplift marked  by negative vertical displacement values 
are relatively small compared  to the subsidence. The 
degree of this asymmetry  varies with fault dip. 

Subsurface vertical displacements are shown in Fig. 2 
for a blind rectangular fault. The fault dips at 60 °, and its 
top is at depth D = 8 km from the free surface. The 
locations of three vertical sections (AB, CD,  EF) are 

shown in Fig. 2(a). Sections AB and CD are normal to 
the strike of the fault, while section EF is parallel to the 
strike. Section AB cuts the fault through its centre. 
Figure 2(b) is the vertical displacement contour map 
along section AB,  and shows the deformation on both 
sides of the fault. Positive contour values correspond to 
subsidence while negative values correspond to uplift. 
Note that the straight line formed by the zero displace- 
ment  contour within the fault zone is at an angle of 60 ° 
with the horizontal,  and exactly corresponds to the 
prescribed dip of the fault. Displacements on each side 
of the fault are maximum adjacent to the fault. 

Figure 2(c) shows the vertical displacement contour 
map on the vertical section CD which is 2 km away from 
the edge of the fault. In comparison with (b), it can be 
seen that the displacement values for this section are 
significantly reduced. Fur thermore ,  the point of maxi- 
mum displacement on the downthrow side has moved  
upwards,  while the point of maximum displacement on 
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Fig. 2. (a) Plan view of a buried rectangular fault and three vertical sections. The fault is at depth D = 8 km. Sections AB 
and EF cut through the fault centre. (b) Vertical displacement contour map along section AB (x = 0 km). (c) Vertical 

displacement along section CD (x = 22 km). (d) Vertical displacement along section EF (y = 5 km). 
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Fig. 3. (a) Contour displacement diagram for a fault from the U.K. North Sea basin (from Barnett et al. 1987). 
Displacement values include displacements on several synthetic splays. Vertical displacement measured as two-way travel 
time (ms) with resolution of 5 ms; np  denotes fault not present. (b) Cumulative displacement geometry for the elliptical fault 
growth model (Wash & Watterson 1987) with long axis 40 km and short axis 20 km. Note that the slip (in metres) varies from 

a point of maximum displacement (1 km) at the centre to zero displacement at elliptical tip-line. 
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Fig. 4. (a) Geometry of an elliptical dip-slip fault with cumulative displacement distribution. The maximum displacement 
at the centre is 1 km. The fault dips at 60 ° towards the positive Y direction and intersects the free surface (D = 0). The 
observation horizon is the free surface. (b) Vertical surface displacement (U~) contour map. (c) Horizontal surface 

dispacement (Ux). (d) Horizontal surface displacement (Uy). 
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the upthrow side of the fault has moved downwards. 
Although the section does not intersect the fault surface, 
a fault zone indicated by closed displacement contours is 
still apparent. Figure 2(d) is the displacement contour 
map on the vertical section EF parallel to the fault, and 
shows two concentric elliptical contour lines within the 
footwall and hanging wall. The zero displacement con- 
tour line corresponds to the level of the fault centre, 
which is at a depth of 16.6 km. 

ELLIPTICAL FAULT WITH CUMULATIVE 
DISPLACEMENT 

Dip-slip fault 

Field observations and seismic reflection data show 
that fault surfaces, whether for blind faults or ones 
intersecting the free surface, are never rectangular, nor 
are the displacements constant. Fault geometry and 
displacement data extracted from coal mine records and 
SG 15:12-F 

high-resolution seismic reflection data show a systematic 
displacement variation for blind faults with fault dying 
out upwards, downwards and laterally. Figure 3(a) is a 
strike projection showing fault displacement for a blind 
fault from the U.K. North Sea basin, constructed by 
projecting displacement values at points on a fault sur- 
face onto a surface parallel to the fault strike (Barnett et 
al. 1987). An idealized blind fault has an elliptical fault 
surface defined by the zero displacement contour, and 
displacement which varies from a point of maximum 
displacement at the centre to zero displacement at the 
tip-line. Contours of equal displacement form ellipses 
centred on the point of maximum displacement. The 
displacement gradient normally varies with direction on 
the fault surface, the ellipse usually being elongated 
laterally. Figure 3(b) shows the displacement contours 
for an idealized blind fault corresponding to those of the 
Walsh & Watterson fault growth model (Watterson 
1986, Walsh & Watterson 1987). The fundamental con- 
cept of the Walsh & Watterson fault growth model is 
that the slip increases linearly with fault radius as the 
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Fig. 5. (a) Perspective view of an elliptical fault and a subsurface observation horizon. The fault dips at 60 ° and its top is at 
depth D = 10 km. The observation horizon is horizontal and at depth z = 18.6 km, cutting through the fault centre. 

(b) Vertical displacement (Uz) contour map. (c) Horizontal displacement (/_Ix). (d) Horizontal displacement (Uy). 
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fault grows so that the maximum total displacement 
increases with the square of the fault length. For  a blind 
fault grown by multiple slip events in which the maxi- 
mum slip in successive slip events increases by a constant 
amount,  the cumulative displacement can be calculated 
using the formula derived by Walsh & Watterson (1987). 
The displacement distribution shown in Fig. 3(b) has 
been used in the following elastic dislocation model 
displacement calculation. 

The computation procedures are similar to those for a 
rectangular fault. The displacement geometry differs in 
that the displacement across the fault surface now varies 
from point to point, rather than having a constant value 
for a rectangular fault. Unit slip is assumed for all the 
point sources followed by linear scaling to incorporate 
displacement variation as determined by the fault 
growth model. 

Figure 4 shows the vertical and horizontal surface 
displacement contour  maps calculated for the elliptical 
fault growth model described above and shown in Fig. 
3(b). The fault dips at 60 ° and intersects the free surface. 

It can be seen that the displacement values and de- 
formed area, in any one of the contour maps, are smaller 
than those of the rectangular constant slip fault (Fig. 1). 
The concentric ellipse-like contours formed by equal 
horizontal displacement (Ux) and shown in Fig. 4(c) are 
closer to each other than those for the rectangular fault. 
For the vertical displacement (Uz), the closed contours 
on both sides of the fault are less flattened for the 
elliptical fault growth model (Fig. 4b) than for the 
constant slip model (Fig. lb).  The asymmetry of vertical 
displacements on both sides of the fault is still apparent. 

Fault dip controls the displacement distribution and as 
a consequence the symmetry-asymmetry of displace- 
ment patterns on the down-throw and up-throw sides. It 
is well known that a vertical dip-slip fault displays an 
antisymmetry in vertical displacements between up- 
throw and down-throw sides. Any fault whose dip is less 
than 90 ° will show an asymmetry in vertical displace- 
ments, and the asymmetry increases with decreasing 
fault dip. This assymmetry is such that fault uplift is 
reduced relative to subsidence for a normal fault. At  the 
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same time, a decrease in fault dip is accompanied by a 
decrease in the vertical component of displacements. 
The ratios of the maximum amount of uplift to the 
maximum amount of subsidence on the free surface are 
about 1, 9, 24 and 100%, for the dip-slip elliptical fault 
growth model with dips of 30 °, 45 °, 60 ° and 90 °, respect- 
ively, and are about 7, 20, 40 and 100% for a rectangular 
fault of constant slip with the same dimension and dips. 
The ratios of maximum uplift to maximum subsidence 
and their dependence on fault dip are therefore different 
for the elliptical fault growth and the rectangular con- 
stant slip fault models. 

Subsurface fault displacement patterns differ pro- 
foundly from those of the surface. The displacement 
contour pattern is shown in Fig. 5 on a subsurface 
horizontal plane which intersects the centre of an ellipti- 
cal blind fault. Figure 5(a) is a perspective view of a blind 
fault and a subsurface horizon. The blind fault again dips 
at 60 ° and has a depth of 10 km below the free surface to 
the top of the fault. Figures 5(b)-(d) show the three 
components of displacements at a depth of 18.6 km. The 
fault displacement geometry is otherwise the same as in 

Fig. 3(b). Positive values in Fig. 5(b) correspond to 
subsidence, while the negative values correspond to 
uplift. Note that although the horizon crosses the centre 
of the fault, the vertical displacement contour patterns 
are not symmetric on the down-throw and up-throw 
sides, i.e. there is a greater amount of subsidence than 
uplift. This is because the depth of the fault (10 km) is 
not sufficiently great, compared to the dimension of the 
fault (width 20 km), to eliminate free surface effects. It 
has also been found that the ratio of uplift to subsidence 
increases with an increase of fault depth. Symmetry is 
only expected when the fault depth is much greater than 
the fault dimension. A striking feature of the horizontal 
displacement (Ux) contour map of Fig. 5(c) for the 
elliptical fault growth model is that, in contrast to the 
similar map in Fig. l(c) for the rectangular fault with 
constant slip, the fault growth model shows outward 
movement in a direction parallel to strike on both sides 
of the fault. The displacement contour patterns of Uy for 
the elliptical fault growth model are almost symmetric 
with respect to the fault plane. 

Vertical sections of the vertical displacement for the 
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Fig. 6. (a) Locations of a 60 ° dip-slip fault and three vertical sections. The  fault parameters  are the same as that in Fig. 4 
except for D = 8 km. (b) Vertical displacement  contour  map along section AB (x = 0 km).  (c) Vertical displacement along 

section CD (x = 22 km).  (d) Vertical displacement along section EF (y = 5 km). 
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buried elliptical fault growth model are shown in Fig. 6. 
The locations of the vertical profiles are shown in Fig. 
6(a). The general characteristics of contour patterns for 
profiles AB and EF are similar for the elliptical fault 
growth and rectangular fault models except for the 
reduced displacement values of the elliptical fault 
growth model. The two points of maximum displace- 
ments on both sides of the fault in Fig. 6(b) are closer for 
the elliptical fault growth model than for the rectangular 
fault. A conspicuous fault zone is no longer evident for 
profile CD which passes by the side of the elliptical fault. 
This is because the displacement distribution for the 
elliptical fault growth model has lower strains near the 
edge of the fault. 

Strike-slip fault 

The displacement due to a dipping strike-slip fault is a 
linear combination of displacements from a vertical 
strike-slip and a vertical dip-slip fault. Figure 7 shows the 
three components of surface displacement for a 60 ° 
strike-slip fault. The fault geometry and displacement 

distribution are taken the same as in Fig. 4 except for a 
different slip direction. The 'bone'-shaped contour pat- 
terns for the two horizontal displacements (Ux, Uy) are 
similar to those for a vertical strike-slip fault described 
by Chinnery (1961). Displacement contours show asym- 
metry, in contrast to a vertical strike-slip fault which 
shows an anti-symmetric pattern. The displacement 
gradient in the hanging wall block for each displacement 
component is always higher than that in the footwall 
block. Figure 7(c) shows that the primary motion of this 
strike-slip fault is horizontal and along strike. 

Vertical sections of the horizontal displacement (Ux) 
for a 60 ° strike-slip fault are shown in Fig. 8. Sections AB 
and CD are normal to strike while section EF is parallel 
to strike. Positive displacement values indicate the 
direction of material movement is out of the paper, 
while negative values indicate the direction is into the 
paper. Profile AB shows two closure regions of displace- 
ment contours separated by a zero displacement con- 
tour. The contours on both sides of the fault are almost 
symmetric which may indicate that the free surface 
effect is less for the horizontal displacement of a strike- 
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except for D = 8 km. (b) Horizontal  displacement contour map along section AB (x = 0 kin). (c) Horizontal  displacement 

along section CD (x = 22 km). (d) Horizontal  displacement along section EF  (y = - 5  km). 

slip fault than for the vertical displacement of a dip-slip 
fault (refer to Fig. 6b). Profile CD, 2 km away from the 
edge of the fault, shows reduced displacement values. 
Profile EF shows concentric elliptical contour lines. 

Oblique-slip fault 

So far, only dip-slip and strike-slip faults have been 
examined. The model can also be applied to a fault with 
oblique slip. The rake fl is defined as an angle formed by 
the slip direction and the strike of the fault, and can be 
chosen as any values from 0 ° to 360 °. Iffl = 0 °, the fault is 
strike-slip; iffl = 90 °, the fault is dip-slip; iffl = 270% the 
fault is a thrust fault. Mathematically, the displacements 
due to an oblique-slip fault is a linear combination of 
displacements from a vertical strike-slip, a vertical dip- 
slip and a 45 ° dip-slip faults. Figure 9 shows the surface 
displacement contours for an oblique-slip fault intersect- 
ing the free surface. The fault has an elliptical shape and 
displacement gradient. The fault parameters are the 
same as in Fig. 4 except for fl = 45 °. As would be 
expected there is a substantial difference in contour 

patterns compared to the pure dip-slip and strike-slip 
examples. 

SINGLE SLIP FAULT EVENT 

Slip refers to the fault displacement increment occur- 
ring during a single seismic event or cycle. Walsh & 
Watterson (1987) suggest that the maximum slip in- 
creases linearly with fault radius, whereas maximum 
total displacement increases approximately with the 
square of the fault radius. The pattern of normalized 
displacement vs normalized distance from the centre of 
the fault is therefore different for the total displacement 
and individual event slip. Figure 10(a) shows the fault 
surface displacement distribution for a single slip fault 
event where the slip varies from a point of maximum slip 
(1 m) at the centre to zero slip at the tip-line. The slip 
contour pattern differs from that of the total displace- 
ment distribution shown in Fig. 3(b). Specifically, the 
slip gradient (change in displacement/radial distance) is 
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Fig. 9. (a) An oblique-slip fault dipping at 60 °. The displacement geometry is the same as defined in Fig. 4 except for the 
rake fl = 45 °. The observation horizon is on the free surface. (b) Vertical displacement (U~) contour map. (c) Horizontal 

displacement (Ux). (d) Horizontal displacement (Uy). 

higher within a narrow zone adjacent to the tip-line loop 
of the slip surface. For  simplicity and comparison, we 
choose a fault with the same dimension as in Fig. 4. Let  
us suppose we have obtained by some means the surface 
slip distribution of an active fault for the nth slip event as 
shown in Fig. 10(a). The three-dimensional displace- 
ment field increment may be determined using the same 
numerical technique as described in the last section. The 
calculated three-dimensional surface displacements are 
shown in Fig. 10. The closed contours for vertical dis- 
placements on both sides of the fault are more flattened 
for the single slip event than for the cumulative displace- 
ment fault. The horizontal displacement contour pat- 
terns however resemble those of total displacement 
profile of the elliptical fault (Fig. 4). 

FAULT ARRAYS 

It is rare to see a single isolated fault. Geological 
observation shows that the displacement fields of adjac- 

ent faults overlap, and that structure contours are result- 
ants of displacements on multiple faults. To obtain the 
overall pattern of displacement contour maps for two or 
more faults, we must first determine the displacement 
field of isolated single faults separately. The composite 
displacement field may then be obtained by superposi- 
tion of the displacement fields of individual faults. Fig- 
ure 11 shows the total vertical displacements due to 
multiple dip-slip faults intersecting the free surface. The 
fault geometry and displacement distribution are the 
same as those of Fig. 4, except that the maximum 
displacement at the fault centre is 2 km rather than 1 km. 

Figure l l ( a )  shows the total displacement due to two 
parallel faults both dipping in the same direction 
towards 225 ° . The negative displacement values indicate 
uplift, while the positive values in the lower part of the 
diagram indicate subsidence. Within the relay zone, 
where the faults overlap, a ramp-type geometry exists. 
Figure l l ( b )  shows the overall displacement due to two 
parallel faults which dip towards each other  forming a 
full graben with peripheral highs. Figure l l ( c )  shows 
two faults which have opposing dips forming two 
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outward facing half grabens separated by a central horst. 
Figure l l (d )  shows the displacement distribution due to 
three separate faults where the outer faults both dip 
towards 45 °, while the central fault dips towards 225 °. 
The displacement pattern of Fig. l l (d )  shows, along a 
profile from 45 ° to 225 °, a half graben, a horst and a full 
graben. 

Figure 12 shows contours of vertical displacements for 
two parallel elliptical faults of various relative polarities. 
The vertical section is along the Y axis perpendicular to 
the strike of the fault. Figure 12(b) shows vertical 
displacements for two parallel faults dipping in a same 
direction and a highly deformed region is shown be- 
tween the faults. Figures 12(c) & (d) show vertical 
displacements for faults of opposite polarity dipping 
outwards and inwards, corresponding to a horst 
bounded by two half grabens and a full graben, respect- 
ively. 

The theory described in this paper may be applied to 
fault systems with faults of any number, relative orien- 
tation, slip and dimension. 

DISCUSSION 

Using the elastic dislocation theory, we have 
modelled cumulative coseismic deformation associated 
with earthquake faults created by a large number of 
seismic cycles. The model does not however consider the 
gravitational effects relating to positive or negative sur- 
face topography, lower-crustal thinning, lithosphere 
temperature field perturbation, erosion and deposition 
of sediment. These loads, whether positive or negative, 
will result in regional scale isostatic uplift and/or subsi- 
dence. The isostatic loading effects for a normal or a 
thrust fault cutting the free surface are greater than for a 
blind fault, because they generate greater surface subsi- 
dence and culmination than blind faults. The elastic 
dislocation model described in this paper does not take 
into account interseismic deformation due to the relax- 
ation of stresses in the viscoelastic layers of the lower 
crust and mantle, nor its modification by isostasy, which 
play a large role in controlling the final crustal structure 
equilibrium. 
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So far, only planar fault have been considered. In 
practice, fault dips may vary with depth and with forma- 
tion lithology. The variation of fault curvatures will 
affect the displacement geometry  on the fault and con- 
trol the displacement fields within a medium surround- 
ing a fault. It  is anticipated that future fault models of 
subsurface displacement will be able to take into account 
viscoelastic and isostatic effects as well as variable fault 
curvature.  

While the model  formulation permits layer elasticity 
parameters  to be varied, this paper  give results for an 
earth model with one set of elastic parameters  only. 
Elastic properties,  and in particular rigidity, exert a 
strong control on the displacement field. Several earlier 
workers  have studied the effect of  elastic moduli layer- 
ing on fault-induced displacements (Rybicki 1971, Sato 
1971, Chinnery & Jovanovich 1972, Sato & Matsu 'ura  
1973, Jovanovich et al. 1974b). Recently,  Ma & Kusznir 
(in review) have investigated earth layering and gravi- 
tational effects on subsurface displacement using an 
elastic-gravitational dislocation fault model.  They con- 

cluded that for a fault source within the upper  layer, 
variations in the rigidity of lower layers controls the 
amplitude and wavelength of displacements within the 
upper  layer and in particular the relative distribution 
uplift and subsidence within the footwall and hanging 
wall. Displacement variations within the upper  layer, 
due to lower layer rigidity changes, are shown to in- 
crease with depth and are profound at the base of the 
upper  layer. 

CONCLUSIONS 

(1) Using elastic dislocation theory with novel kernel 
functions for expressing displacements in the subsur- 
face, it is possible to evaluate three-dimensional dis- 
placements at any point within a rock volume containing 
a fault. 

(2) Surface and subsurface three-dimensional dis- 
placements have been calculated for an elliptical fault 
with cumulative displacements, and also for a rectangu- 
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(d) 

lar  faul t  wi th  cons t an t  slip. T h e  effects  of  faul t  d isp lace-  
m e n t  d i s t r ibu t ion  and  obse rva t i on  hor izon  level  on 
d i sp l acemen t s  have  been  exp lo red .  

(3) Surface  and  subsur face  t h r e e - d i m e n s i o n a l  dis- 
p l a c e m e n t  m a y  be  d e t e r m i n e d  no t  only  for  d ip-s l ip  faul ts  
bu t  also for  s t r ike-s l ip  and  ob l ique-s l ip  faults .  

(4) I f  the  slip d i s t r ibu t ion  for  a single slip even t  is 
known ,  the  sur face  and  subsur face  d i sp l acemen t s  associ-  
a t ed  with  tha t  slip even t  m a y  also be  d e t e r m i n e d .  A s  a 
c onsequence ,  the  d e f o r m a t i o n  as soc ia t ed  with ear th-  
q u a k e  faul t ing m a y  be  used  to de r ive  e a r t h q u a k e  p a r a -  
mete r s .  

(5) T h e  c o m p o s i t e  d i s p l a c e m e n t  field for  a mul t ip le  
faul t  a r r ay  m a y  be  d e t e r m i n e d  by  supe rpos ing  the  dis- 
p l a c e m e n t  field of  ind iv idua l  i so la ted  faults .  This  m a y  be  
a pp l i ed  for  faul ts  of  any  n u m b e r ,  re la t ive  o r i en t a t i on ,  
slip and  d imens ion .  

(6) O b s e r v e d  faul t  p l ane  d i s p l a c e m e n t  d i s t r ibu t ions  
o b t a i n e d  f rom t h r e e - d i m e n s i o n a l  se ismic  ref lec t ion  and 
mine  p lan  da t a  m a y  be  used  to  p red i c t  the  th ree-  
d imens iona l  subsur face  c o n t i n u u m  d i s p l a c e m e n t  field 
using elas t ic  d i s loca t ion  faul t  mode l s .  
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